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Physics at the Tevatron: 
Lecture I 

CERN, Summer Student Lecture, July 2010


Physics at Hadron Colliders 
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Outline 
  Lecture I: Introduction 

  Outstanding problems in particle physics  
  and the role of hadron colliders 

  Current colliders: Tevatron and LHC 
  Hadron-hadron collisions 

  Lecture II: Standard Model Measurements 
  Tests of QCD 
  Precision measurements in electroweak sector 

  Lecture III: Searches for the Higgs Boson  
  Standard Model Higgs Boson 
  Higgs Bosons beyond the Standard Model 

  Lecture IV: Searches for New Physics 
  Supersymmetry 
  High Mass Resonances (Extra Dimensions etc.) 
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Outstanding Problems in Particle Physics 
and the role of Hadron Colliders 
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Fundamental Particles and Forces 

  Matter  
  is made out of fermions 

  Forces  
  are mediated by bosons 

  Higgs boson 
  breaks the electroweak 

symmetry and gives mass to 
fermions and weak gauge 
bosons 

Amazingly successful in describing precisely  
data from all collider experiments 
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The Standard Model Lagrangian 

gauge sector 

 ν mass sector 

EWSB sector 

flavour sector 

… and beyond? supersymmetry (many variants) 
extra spacetime dimensions 
compositeness   
strong electroweak symmetry 
breaking 
… 
something new?! 

 
 
 

 
[W. J. Stirling] 
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Problem I: Where is the Higgs boson?  
  Precision measurements of  

  MW  =80.399 ± 0.023 GeV/c2 

  Mtop=173.1    ± 1.2    GeV/c2 

  Precision measurements on Z pole  

  Prediction of higgs boson mass within 
SM due to loop corrections 
  Most likely value: 90+36

-27 GeV 
  Direct limit (LEP): mh>114.4 GeV  

•  mH<163 GeV @95%CL 



7


Problem II: What is the Dark Matter? 

Standard Model only accounts for  
20% of the matter of the Universe 
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Problem III:  
Where did all the Antimatter go? 

  Not explained by Standard Model 

Early Universe
 Universe today
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Problem IV: Hierarchy Problem 

  Why is gravity so weak? 
  MW/MPlanck ~1016 or GF/GN~1032! 
  Free parameter m2

H
tree needs to be 

“finetuned” to cancel huge 
corrections 

  Can be solved by presence of 
new particles at M ~1 TeV 
  Already really bad for M~10 TeV 

m2
H ≈ (200 GeV)2 = m2

H
tree + δ m2

H
top + δ m2

H
gauge + δ m2

H
higgs 

[M. Schmaltz] 



10


(Some) More Problems … 

  Matter: 
  SM cannot explain number of fermion 

generations 
  or their large mass hierarchy 

  mtop/mup~100,000  
  Gauge forces: 

  electroweak and strong interactions do 
not unify in SM 

  SM has no concept of gravity 
  What is Dark Energy? 

“Supersymmetry” (SUSY) can solve  
some of  these problems 

                         log10 of Energy 
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SUSY can solve some problems  
  Supersymmetry (SUSY) 

  Each SM particle gets a partner differing 
in spin by 1/2  

  Unifications of forces possible 
  SUSY changes running of 

couplings 
  Dark matter candidate exists: 

  The lightest neutral partner of the 
gauge bosons 

  No (or little) fine-tuning required 
  Radiative corrections to Higgs 

acquire SUSY corrections 
 Cancellation of fermion and 

sfermion loops 

with SUSY


Mass of supersymmetric particles  
must not be too high (~TeV) 

SM
without SUSY


with SUSY


             Energy in GeV
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Beyond Supersymmetry 

  Strong theoretical prejudices for SUSY being true 
  But so far there is a lack of SUSY observation…. 

  Need to keep an open eye for e.g.: 
  Extra spatial dimensions:  

  Addresses hierarchy problem: make gravity strong at TeV scale 
  Extra gauge groups: Z’, W’ 

  Occur naturally in GUT scale theories 
  Leptoquarks: 

  Would combine naturally the quark and lepton sector 
  New/excited fermions 

  More generations? Compositeness? 
  Preons: 

  atom⇒nucleus ⇒ proton/neutron ⇒ quarks ⇒ preons? 
  … ????: something nobody has thought of yet 
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Confusion among Theorists? 
[Hitoshi Murayama] 

Need experiments to figure out which (if any)  
represents Nature 
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Why a Hadron Collider? 
  Disadvantages: 

  Hadrons are complex objects 
  High multiplicity of other stuff 
  Energy and type of colliding parton (quark, gluon) unknown 

  Kinematics of events not fully constrained 

  Advantage: 
  Can access higher energies 

Hadron collider

(collision of ~50 point-like particles)


[Karl Jakobs]


Lepton Collider

(collision of two point-like particles)




15


e+e- vs Hadron Colliders 

  Circular colliders: 
  Pro: 

  Reuse their power on each turn 

  Con: 
  Synchrotron radiation reduces 

energy of particles 
  Problem worsens with m4 

  Linear colliders: 
  Particle sees each component 

just once 
  Now more cost-effective for 

electrons than circular collider 
=> proposal of ILC (=International 
Linear Collider) 

Energy loss

per turn:

Energy loss:

e vs p
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Current Hadron Colliders:  
Tevatron and LHC  

(and the experiments) 
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Luminosity 

  Single most important quantity 
 Drives our ability to detect new processes 

 Rate of physics processes per unit time directly 
related: 

revolving frequency: frev=11245.5/s

#bunches: nbunch=2808

#protons / bunch: Np= 1.15 x 1011


Area of beams: 4πσxσy~40 µm


Ability to observe something depends on Nobs  
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LHC and Tevatron Machine Parameters 

  LHC today  
  Delivers less data than Tevatron 
  But runs at 3.5 time higher energy 

  Depends on process which is more powerful 

LHC  
(today) 

LHC 
(design) 

Tevatron 
(achieved) 

Centre-of-mass energy 7 TeV 14 TeV 1.96 TeV 
Number of coll. bunches 8 2808 36 
Energy stored in beam 0.6 MJ 360 MJ 1 MJ 
Peak Luminosity (1030 cm-2s-1) 1.6 10000  400 

0.35 pb-1 >100 fb-1 ~9 fb-1 
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The Tevatron 
  pp collider: 

  6.5 km circumference 
  Beam energy: 980 GeV 

  √s=1.96 TeV 
  36 bunches: 

  Time between bunches: 
Δt=396 ns 

  Main challenges: 
  Anti-proton production and 

storage 
  Irregular failures: 

  Quenches 

  CDF and DØ experiments: 
  700 physicists/experiment 

Chicago
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The Large Hadron Collider (LHC) 

p
 p


√s≈14 TeV


Circumference: 28 km
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Integrated Luminosity 

  Tevatron: 9 fb-1 delivered 
  LHC: 0.36 pb-1 delivered 

  Very steeply rising due to progress in accelerator 
commissioning 

LHC


Tevatron
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Instantaneous Luminosity  

•  Tevatron: 4.0x1032 cm-2 s-1 

•  LHC: 1.6 x 1030 cm-2 s-1 

• Goal: reach 1 x 1032 cm-2 s-1 by the end of this year 
• At 1x1032 cm-2 s-1 it takes about 24h to get 10 pb-1 

Tevatron

LHC
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The Experimental Challenge 

  Measured hits in detector  
  => use hits to reconstruct particle paths and energies 
  => estimate background processes    
  => understand the underlying physics 

Higgs


Supersymmetry
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Particle Identification 
Detector designed to separate electrons, photons, muons, neutral and 
charged hadrons
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CDF 
  Core detector operates since 1985: 

  Central Calorimeters 
  Central muon chambers 

  Major upgrades for Run II: 
  Drift chamber: COT 
  Silicon: SVX, ISL, L00 

  8 layers 
  700k readout channels 
  6 m2 

  material:15% X0 
  Forward calorimeters 
  Forward muon system 

  Improved central too 
  Time-of-flight 
  Preshower detector 
  Timing in EM calorimeter 
  Trigger and DAQ  
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Some CDF Subdetectors 
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DØ Detector 

  Retained from Run I 
  Excellent muon coverage 
  Compact high granularity LAr 

calorimeter 
  New for run 2: 

  2 Tesla magnet 
  Silicon detector 
  Fiber tracker 
  Trigger and Readout 
  Forward roman pots 
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DØ Detector 
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Detector Operation 

  Data taking efficiency about 80-85% 
  Depending on which components are needed for analysis 
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LHC Construction 

April 26th 2007

Descent of last magnet


Cryostating    425 FTE.years 

Cold tests       640 FTE.years 
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ATLAS and CMS Detectors 

Weight 
(tons)


Length 
(m)


Height (m)


ATLAS
 7,000
 42
 22


CMS
 12,500
 21
 15


~2000 Scientists per experiment  
+ many engineers and technicians 
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ATLAS and CMS in Berlin 

ATLAS 

CMS 
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Detector Mass in Perspective 

CMS is 30% heavier than the Eiffel tower 

CMS 

Eiffel 
tower 
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Silicon Tracking Detectors 

  Silicon strip and pixel 
detectors 
  Pixels used for first time at 

hadron colliders 
  Huge! 

  area of CMS silicon ~200 m2 
  Like a football field! 
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Muon Systems and Calorimeters 



Celebrating 7 TeV Collisions in ATLAS 

36
See Lectures from T. LeCompte
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Hadron-Hadron Collisions 
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Calculating a Cross Section 
  Cross section is convolution of pdf’s and Matrix Element 

  Calculations are done in 
perturbative QCD 
  Possible due to factorization of 

hard ME and pdf’s 
  Can be treated independently  

  Strong coupling (αs) is large 
  Higher orders needed 
  Calculations complicated 
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The Proton Composition 

  It’s complicated: 
  Valence quarks, Gluons, Sea 

quarks 
  Exact mixture depends on: 

  Q2: ~(M2+pT
2) 

  Björken-x:  
  fraction or proton momentum 

carried by parton 

  Energy of parton collision: 

X 

p 

p 
xBj


Q2


MX = √s
ˆ
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Parton Kinematics 

  Examples: 
  Higgs: M~100 GeV/c2 

  LHC: <xp>=100/14000≈0.007 
  TeV: <xp>=100/2000≈0.05 

  Gluino: M~1000 GeV/c2 

  LHC: <xp>=1000/14000≈0.07 
  TeV: <xp>=1000/2000≈0.5 

  Parton densities rise dramatically towards low x 
  Results in larger cross sections for LHC 

pdf’s measured in deep-inelastic scattering
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Physics Cross Sections 

  ∫Ldt=1 fb-1 at LHC competitive with 10 fb-1 at 
Tevatron for high mass processes 

  ∫Ldt=100 pb-1 already interesting in some cases 

Process MX σ(LHC @ 7 TeV) 
σ(Tevatron) 

qq→W  80 GeV 3 
qq→Z’SM 1 TeV 50 
gg→H 120 GeV 20 
qq/gg →tt 2x173 GeV 15 
gg → gg 2x400 GeV 1000 

_

_


_


~
~


_
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Cross Sections at Tevatron and LHC 

  A lot more “uninteresting” than 
“interesting” processes at design 
luminosity (L=1034 cm-2s-1) 
  Any event:            109 / second 
  W boson:             150 / second  
  Top quark:               8 / second 
  Higgs (150 GeV): 0.2 / second 

  Interesting events gets selected 
  By trigger: 

  Online selection mechanism to find 
events which contain hard jets, leptons 
etc. 

  By physics analysis 
  Offline selection designed to suppress 

the background compared to the signal 

Cr
os

s s
ec

tio
n 

(n
b)
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Kinematic Constraints and Variables 

  Transverse momentum, pT 
  Particles that escape detection (θ<3o) have pT≈0 
  Visible transverse momentum conserved ∑i pT

i≈0 
  Very useful variable! 

  Longitudinal momentum and energy, pz and E 
  Particles that escape detection have large pz 
  Visible pz is not conserved 

  Not a useful variable 

  Polar angle θ 
  Polar angle θ is not Lorentz invariant 
  Rapidity: y  
  Pseudorapidity: η  

For M=0


pT

pz


p

θ
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Conclusion of 1st Lecture 

  Hadron Colliders  
  can address many of the problems with the Standard Model 

  Higgs boson 
  Physics beyond the Standard Model (e.g. Supersymmetry) 

  access higher energies than lepton colliders 
  Thus higher mass particles 

  are experimentally challenging 
  Many uninteresting background processes 
  The collisions themselves are complex 

  Current colliders: 
  Tevatron is running since 2001 

  Has about 9 fb-1 collected 
  LHC is now running as the world’s highest energy collider 

  Luminosity continues to increase: goal 1 fb-1 by end of 2011 
  Will then be competitive with LHC in most areas 
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Every Event is Complicated 

  “Underlying event”: 
  Initial state radiation 
  Interactions of other partons in proton 

  Additional pp interactions 
  LHC: ~1.5 (~23 at design values) 
  Tevatron: ~10  

  Many forward particles escape detection 
  Transverse momentum ~0  
  Longitudinal momentum >>0  

 

Proton AntiProton 

“Hard” Scattering 

PT(hard) 

Outgoing Parton 

Outgoing Parton 

Underlying Event Underlying Event 
Initial-State 
Radiation 

Final-State 
Radiation 

H →ZZ→µ+µ-µ+µ-) 


